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ABSTRACT

Circuit extraction is critical in the validation of VLSI circuits since it provides the link
between the design and the simulation phases. The use of hierarchical design techniques and
hierarchical analysis methods increases design productivity. In this thesis, the development of
iCHARM, a hierarchical circuit extractor, is described. The extractor takes its input layout in
either the CIF format or the Oct VLSI database format. The extractor produces circuit parasitics
including capacitances and resistances. A power bus extraction mode has been developed to cal-
culate power bus currents for reliability estimation. The primary contribution of this work is a
method to extract a circuit hierarchically without flattening and with minimal overhead. A full-
chip layout was used to test the extractor’s functionality and to allow a comparison of the hierar-
chical and flat extraction modes.
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CHAPTER 1

INTRODUCTION

1.1. Design of VLSI Circuits

The high level of integration in recent VLSI circuits — up to one million transistors in a sin-
gle chip [7] — has required the use of increasingly sophisticated Computer-Aided Design (CAD)
tools. These CAD programs are used to analyze and verify the circuit and layout design of a chip
before it is actually made, since any changes after fabrication add significantly to the develop-
ment cost of the chip. In addition to ensuring that a chip works "in first silicon,” the use of

automated methods also shortens the chip’s "time-to-market" which can add to its profitability.

This thesis is concerned with the problem of circuit extraction, which is the transformation
of layout information into circuit information. After extraction, the circu’t is simulated before it

is fabricated to verify that it performs as intended.

In addition to CAD, the use of hierarchy is a way to increase design productivity and reduce
the complexity of the design task. Rather than design each individual transistor, the repetition or
regularity of a design is exploited to reduce the amount of work that must be done. A cell is
defined to be the unique or atomic part of a design that needs to be designed only once. Copies
or instances of cells are made wherever the cell is needed. There are certain so-called primitives
of a cell: in circuit layout, the primitives are the mask-level geometries. Cells may contain prim-
itives, or instances of other cells, or a combination of both. Cells that contain no instances are
called leaf-level cells; cells that contain instances but are not the top-level cell are often called
intermediate-level cells. A hierarchically defined cell is shown in Figure 1.1. In the figure, cell
A is the top-level cell, cells B, C, and D are intermediate cells, and cells E and F are leaf-level

cells. The use of hierarchy in a top-down design style is particularly effective.

A top-down, hierarchical design style, as shown in Figure 1.2, involves decomposing high-
level functional blocks into smaller and smaller functional units until each unit is well-defined, is

a reasonable size for a leaf-level block, and has an obvious implementation in the target




Figure 1.1 - A hierarchically defined cell

technology (for instance in MOS, bipolar, or both). At each design level the current implementa-
tion is verified by creating models of the design and simulating them. At the architectural level,
the models are behavioral; at the logic level, logic gates are simulated; the design is finally com-
posed of transistors at the circuit design level. The circuit’s actual implementation on silicon is

not realized until the layout or artwork design work is completed.

Circuit extraction provides the link between the design of artwork and its verification
through simulation. The circuit elements extracted from the actual artwork must match the
behavior that was previously simulated at the other levels in the top-down design process. Only
when this is achieved is it felt that there is sufficient reason to believe the chip will operate

correctly when fabricated.
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Figure 1.2 - A top-down, hierarchical design process

1.2. Circuit Extraction

The artwork provides a large measure of reality in verification; at other levels the difference
between the models and reality may be significant if the modeling is not done properly. There-

fore, it is important to accurately model the circuit implemented by the artwork. There are two
main goals for verification:




(1) functional verification
(2) performance verification

Functional verification ensures that the circuit at the current design level accomplishes its
desired function. Performance verification goes one step further to see if the circuit operates
within its timing requirements. Estimating the delays of the circuit is dependent on the design
style used as well as the technology and process of the circuit. For example, a circuit may be
implemented in a design style using fully complementary CMOS or Domino CMOS to trade off
ease-of-design against speed.

To verify the circuit, extraction achieves the following:
(1) identification of active devices (transistors)
(2) identification of electrically connected geometries (nets)
(3) extraction of the electrical parameters of transistors (e.g., dimensions of the transistors)

(4) estimation of parasitic resistances and capacitances of the interconnection nets

The identification of transistors and nets is required to functionally verify the circuit. The

structural connectivity is the minimum required to verify a circuit’s function.

On the other hand, the extraction of transistor parameters and the parasitic resistance and
capacitance of the nets connecting the transistors is needed for accurate performance
verification. The resistances and capacitances of the interconnection lines are termed parasitic
since they are not explicitly designed as part of the circuit but are a side effect of the electrical
properties of the conductor materials. As the dimensions of typical artwork shrink below one
micron, the parasitic effects begin to be more significant on circuit performance. The intercon-
nection lines will ther begin to occupy more of the chip area relative to the size of the active
devices. As the minimum line widths shrink, the length and thus the resistances of the intercon-
nection lines will increase. For these reasons, it is critical to accurately extract the parasitic

effects from the circuit layout for performance verification.

1.3 Features of iCHARM

This thesis describes the development of a hierarchical circuit extractor named iCHARM.!

! Since the extractor is hierarchical, the natural name for it could be HEX, for Hierarchical EXtractor. HEX

has already been used to describe an extractor in the past, so a synonym for "hex," "charm,” was chosen.




Just as hierarchy is used to reduce the amount of work required to design a VLSI circuit, the work
done by an extractor can make use of the regularity of the circuit to reduce the analysis time. In
fact, the hierarchical partitioning of the circuit by the dcsigner is also used to do the extraction.
Hierarchical extractors analyze each unique cell of the circuit only once and refer to the previ-
ously extracted information when an instance of the cell is encountered. When the analysis is
done flat, on the other hand, each part of the circuit is looked at with no attempt to recognize any

similarity with previously analyzed structures.

The iCHARM program was developed using PACE, an existing extractor program written by
Krishna Belkhale, as its basis 11]. PACE contributed the flat extraction of transistors and the
parasitic extraction code to iCHARM, and was implemented on a parallel computer. The ability
to do hierarchical analysis and the enhanced input routines to read a layout from the Oct data-

base format are new contributions and are the goals of this research.

1.3.1. Capabilities of iCHARM

iCHARM is written in C, runs under UNIX® and has the following features:

CMOS circuits:
The extractor assumes the input layout is in CMOS technology with any number of metal
interconnection layers. A technology file is read to determine the process parameters of
each layer and the connectivity between layers.

Manhattan geometries:

iCHARM supports only rectangles as mask geometries; therefore, the extractor works only
for manhattan-style layouts, i.e., layouts where the edges of the geometries are parallel to
the x- or y- axis.

CIF and Oct input formats:
The input layout read by iCHARM is described in either the CIF (Caltech Intermediate Form)
format or in the Oct database format. The two formats and their input routines are
described in more detail in Chapter 2.

Spice output format:

The extracted circuit description is output in the Spice circuit simulator format. If the

2UNIX is a trademark of AT&T Corp.




extraction is done hierarchically, each cell extracted generates a .SUBTKT card. An option

to output the circuit in the Oct format also is envisioned.

Scanline algorithm:

The input layout is represented internally in iCHARM in terms of rectangles. A scanline
algorithm is employed to carry out the extraction process. This is described in detail in this

thesis.

The program may be run in several modes as shown in Figure 1.3, and described as fol-

lows:

8))
=

(2)

Zirst, the user has the option of running the extractor in flat or hierarchical extraction mode.
If there is a high degree of regularity in the circuit (if the circuit h: = just a few cells but
perhaps a large number of instances), then the hierarchical mode should run faster and use

less run-time memory than an equivalent run in the flat extraction mode.

The user also has a choice of the parasitics of the interconnection lines that may be

extracted. The default mode is to extract each net’s substrate capacitance (the capacitance
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Figure 1.3 - Run-time options of iCHARM
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between the net and ground). In addition to the capacitance, the user may extract the resistance

through each interconnection net.

(1) iCHARM has a special mode to extract the mask-level rectangles of the power bus nets (typi-
cally Vdd and GND). This mode does additional processing of the power bus nets for subse-
quent analysis by other programs to do reliability estimation. This is described in Section
43.

1.4. Overview of the Thesis

This thesis consists of six chapters. Chapter 2 presents the input routines that read the input
layout and create hierarchical data structures. iCHARM reads the layout description in either the
CIF or Oct data formats. Chapter 3 describes the circuit extraction process in more detail. Vari-
ous extraction algorithms are presented along with the method employed by iCHARM, a scanline
algorithm. The implementational details of iCHARM are split into Chapters 4 and 5. The flat
extraction techniques to extract the basic connectivity and circuit parasitics are presented first.
Hierarchical extraction techniques are covered in the Chapter 5. In Chapter 6, the results of the
testing of iCHARM using a complete chip layout are presented. The thesis ends with a list of pos-

sible extensions to the extractor and some concluding remarks.




CHAPTER 2

INPUT TO CIRCUIT EXTRACTION

The input to an extractor consists of the mask geometries of the layout. In the case of
iCHARM, the layout consists solely of rectangles. iCHARM supports two input formats to
describe the layout: the CIF format and the Oct database format. During the input phase of
iCHARM, the input layout is read in and internal data structures for the program are created. In
this chapter, the hierarchical data structures that are created from the layout are described first.
Then, the two input formats are presented along with a brief description of the procedure used to

create the data structures from each of the input formats.

2.1. Hierarchical Data Structures

In order to do hierarchical extraction, it is important for iCHARM to preserve the hierarchi-
cal structure of the layout that was created by the user. In iCHARM, the two data structures
representing the hierarchical layout are the cell and instance structures. The C-language

definitions of these basic structures are shown in Figure 2.1.

The cell struct contains the definition of a cell. The cell number (or symbol index) serves
as the identifier for the cell. The rectlist field of the cell contains a list of the layout rectangles
for the cell. The bounding box for the cell, the smallest rectangle that encloses all of the layout

rectangles of the cell, is computed when all of the rectangles of the cell are read in. The coordi-

nates of the cell bounding box are placed in the bound array. The instlist field of the cell has a
list of the instances of the cell. The extraction process produces a list of nets and transistors for
the cell (the netlist and tranlist fields); the other fields of the cell struct will be explained later as

needed.

Pointers to all of the cell definitions are kept in a hash table. The hash function uses the
cellnum field to identify each cell. In this way, any cell definition can be retrieved given a cell’s

cellnum.

' |




/* CE L L - the definition of a hierarchical cell */
typedef struct _cell {

int cellnum; /* identifying number */
char *cellname; /* name string */
boolean done; /* if cell has been processed */
long bound[4]; /* bounds of the cell */
struct _rect *rectlist; /* list of rects for the cell */
struct _label *labellist; /* list of labels for the cell */
struct _rect *oviprectlist; /* list of rects overlapping this cell */
struct _term *exttermlist; /* list of external terminals */
struct _term *inttermlist; /* list of internal terminals */
struct _inst *instlist; /* list of instances in this cell */
struct _net *netlist; /* list of pets in this cell */
struct _tran *tranlist; /* list of transistors in this cell */
struct _cell *nextptr;

} cell, *cellptr;

/* INST AN CE - the hierarchical instantiation of a cell */
typedef struct _inst {

struct _cell *defn; /* pointer to the cell definition */
int tfmatrix[3}{3); /* transform matrix: no non-90° rotations */
long bound{4}]; /* bounds of the instance */
struct _term *termiist; /* list of terminals for this instance */
struct _inst *nextptr;
} inst, *instptr;

Figure 2.1 - Cell and instance data structures

An instance struct is created for each instantiation of a cell. The purpose of the instance
struct is to prevent the repetition of information contained in the cell definition, thus a pointer
back to the cell definition is needed (this is the defn field). The transformation matrix of the
instance — a specification of how the instance is placed within its parent — is in the tfmarrix
field of the instance. Transformation matrices are presented in Section 2.3. The cell’s bounds
are transformed by the transform matrix into the bound array of the instance; thus the bounding
box of the instance is always available. In Figure 2.2, a given hierarchy and its cell and instance

structures are shown as an example.
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2.2. CIF Input Format

For many extractors including iCHARM, the input layout is described in CIF (Caltech Inter-
mediate Form — Version 2.0), an ASCI file format where each layout geometry is described in
terms of its shape (in iCHARM this is restricted to rectangles), mask layer, and coordinates. A
detailed description of the CIF format is given in Mead [9]. In the following section, the basic
features of the CIF format will be presented in order to discuss how the hierarchical data struc-

tures are built during the input phase of iCHARM.

A CIF file describing a layout is composed of a sequence of commands, the last of which is

an end marker. Each command is terminated with a semicolon. The CIF commands recognized




Table 2.1 - CIF Commands Recognized by iCHARM!
Command Syntax
Box with length, width, center B length width point point;
Layer specification L layemame;
Start symbol definition with index, scale a/b DS index ab;
Finish symbol definition DF;
Call symbol C index transformation;
User extension digit user_text;
Comments (comment_text);
End marker E

by iCHARM — a subset of all of the commands described in Mead [9] — are shown in Table 2.1.

The rectangle primitives are defined by the Box command. The Layer command defines
the current mask layer; all primitives that follow the Layer command are to be placed on the

current maJk layer.

CIF allows cells (or symbols in CIF terminology) to be defined to create hierarchy in a design
and reduce the length of the file. The DS command begins the definition of a cell, and the DF
command concludes that definition. All primitives between these two commands belong to the

cell. The cell number (or index) that identifies the cell is the first parameter of the DS command.

The C command is used to make an instance (or call, in CIF terminology) of the given cell
(identified by the symbol number) and to apply the given transformation to the primitives within
the cell definition. There are four types of transformations that may be applied to coordinates
within the cell when it is instantiated; these are shown in Table 2.2.

The primitives in the instantiated cell are transformed in the order of the transformations

given in the cell call command. For example, "C 23 T 500 0 MX;" adds 500 to the x-coordinates

Table 2.2 - Primitive Transformations
T point  Translate the called cell’s origin to this point
MX Mirror in X; i.e., multiply the x-coordinate by -1
MY Mirror in Y; i.e., multiply the y-coordinate by -1
R point  Rotate the cell’s x-axis to this direction vector

' . After Mead [9], page 116.
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of the primitives in cell 23, then multiplies the x-coordinates by -1; however, "C 23 MX T 500
0;" does the multiplication by -1 before the translation of 500.

When a cell is instantiated, each transformation is not performed separately but can be
accomplished in one operation through the use of a single transformation matrix. A 3 x 3
transformation matrix T is used to transform a point (x, y) in the cell definition to its instantiated

coordinates (x, y) in the final design by the matrix operation

Xy 11=[xy 1]T

The transform matrix T should be the product of primitive transformations given in the cell
call in the same order given in the call. For example, if T =T, T; T3, then T; is the primitive
transformation matrix for the first transformation in the cell call, T, is the matrix for the second
transformation, and T is the matrix for the third. Each primitive transformation is found by the

following template:

1 0 O 1 0 O

Tab T;= 0 1 0 MY T;= 0 -1
a b 1 0 0 1
-1 0 O alc blc 0
MX T;= 0 1 0 Rab Ti=-blc ac 0
0 0 1 0 0 1

where ¢ = Va2 + b2.

2.3. Transformation of Nested Cells and Flattening the Hierarchy

A cell definition may contain calls to other cells, and these cells may in turn contain calls to
other cells, etc. In order to transform coordinates in a nested subcell, it is necessary to combine
the effects of the transformation matrices of the instances throughout the hierarchy. For exam-
ple, suppose a chip has an instance of cell A, and cell A has an instance of cell B (Figure 2.3
illustrates the situation). The instance of A and the instance of B have transformation matrices
Ta and Tp, respectively. In order to transform the coordinates of a rectangle in cell A to the
coordinate system of the chip, the transform matrix To may be used: similarly, to transform
coordinates in cell B to cell A requires Tg. To transform coordinates in cell B o levels to the

coordinate system of the chip requires:
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Figure 2.3 - Transformations in a two-level hierarchy
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One can see that the transformation of two levels from the coordinate system of cell B to the
coordinate system of the chip may be combined into a single trarsformation matrix of
T=Tp Tao. Combining the effects of several levels of transformation matrices is useful in

flattening the circuit hierarchy.

Flattening one level of hierarchy involves instantiating all rectangles of a cell instance into
its parent cell. To instantiate a rectangle from an instance into its parent, first a copy is made of
the rectangle. The instance’s transform matrix is then used to transform the rectangle from the
instance’s coordinate system to the parent’s coordinate system. To flatten through all levels of
hierarchy, one starts at the leaf-level cells and instantiates their rectangles into their parent cells.
This continues up through all levels of the hierarchy until the rectangle is instantiated into the

top-level cell.

The flat extraction mode in iCHARM first flattens the hierarchy of the circuit so that all rec-
tangles in the instances below the top-level cell are instantiated into the top-level cell. Extrac-

tion is then done on the rectangles present in the top-level cell, which now holds all of the
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rectangles for the circuit. If there is a large degree of repetition in the top-level cell, a large
amount of memory would be required to store the design. In any case the flattening procedure is
simple to execute.

The procedure to flatten a given hierarchy, as outlined in Procedure 2.1, is a recursive walk
down the hierarchy starting at the top-level cell. At each level, the current transformation matrix
is used to transform the coordinates from the current level to the top-level coordinate system. To

descend to the next level (for the next recursive call), the current transform matrix is multiplied

Procedure 2.1 - Flattening a hierarchy
{

Flatten()

Input: Top-level hierarchical cell Cellhead.

Output: All rects of lower-level cells instantiated into Cellhead.
}
Flatten(Cellhead)
begin

for all instances, instp, of Cellhead

Instantiate Cell(instp—defn, instp—tfmatrix);

end;

{
InstantiateCell()
Input: currentcell: current cell being instantiated
tmatrix: current transformation matrix
Output: The rects of lower-level cell instances have been instantiated into Cellhead.
}
InstantiateCell(currentcell, tmatrix)
begin
{ copy all of currentcell’s rects into Cellhead }
for all rects, currrect, of currentcell begin
transform coords of currrect using transform matrix tmatrix;
put currrect into Cellhead’s rectlist;
end;
for all instances, instp, of currentcell begin
{ premultiply current transform matrix by instp’s transform matrix }
newtmatrix < MatrixMultiply(instp—tfmatrix, imatrix).
Instantiate Cell(instp—defn, newtmatrix);
end;
end;




15

with the transform matrix of the instance that will be used for the next level of recursion. In this
manner, the effects of all the previous transform matrices (from the top-level down to the current
level) are combined into the current transform matrix, so that it may be used to transform the

current coordinate system into the top-level coordinate system.

2.4, CIF Input Module

Reading in a CIF layout is straightforward since, by the rules of the language, a cell must be
defined before it is called. Cells are defined in bottom-up order in a hierarchical CIF file. There-
fore, cell structs are created in the order they are defined in a CIF file: for each DS command, a
new cell struct is allocated. The rectangles labels that follow the DS command are attached to

the cell until a DF command is read.

Any cell instances that occur within the cell ("C" commands) create instance structs that are
attached to the cell. The defn pointer of the instance struct is set by retrieving the cell definition
of the instance, since the cell must be previously defined. Any CIF primitive transformations
("T", "M", or "R") in the cell call are converted into one transformation matrix which is attached

to the instance struct.

2.5. Shortcomings of CIF

The purpose of the CIF format is to provide a standard interchange format between various
programs to describe mask layout data as shown in Table 2.3. CIF may be produced as the output
of a symbolic layout tool or an interactive layout editor which originally created the layout. The
layout described in CIF may then be processed by a variety of programs: display or plotting pro-

grams to view or produce a hard-copy of the layout, pattern generators to produce the final

Table 2.3 - Programs That Produce or Consume CIF
Input layout programs — CIF —»  Programs to process layout
layout editor layout plotter
symbolic layout tool layout display

pattemn-generators (for
final mask creation)
layout verification and
analysis programs
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masks, and programs to verify or analyze the layout such as extractors and reliability analysis or
yield prediction programs.

iCHARM needs to support CIF because it provides this standard interchange format and also
because many extractor programs use CIF. Existing layouts described in CIF can be used to com-

pare results against other extractors.

One shortcoming of CIF, however, is that it is not meant to be a design language. The
design of a layout is not meant to be carried out by manipulating a CIF file directly. CIF is not an
efficient way to internally represent layout for a program, i.e., CIF is not a good database or
secondary storage format for a layout. CIF is meant to be produced by layout programs for sub-
sequent use by other layout programs since the internal representations of the layout in the com-
municating programs are dissimilar. The main shortcoming of CIF as an input format — its loose
coupling with the design of the layout — necessitates the use of the Oct/Vem system. This is

described in the next section.

2.6. The Oct/Vem System

Oct/Vem is a VLSI data management and design system developed at UC Berkeley [12].
Oct is a data management system capable of storing the design data for an entire VLSI chip,
including the schematics, artwork, or the extracted netlist of a design. The design information in
the Oct format is stored in binary files, and Oct provides a simple interface for different applica-

tion programs to access the design data.

Vem is a graphical editor used to manipulate the graphical representations of design data in
the Oct format; since Oct can store circuit schematic or mask artwork information, these
representations may be created and edited with Vem. Vem features a menu-based, multi-

window user interface that is built using the X-window system.

Figure 2.4a shows a typical design verification system that uses CIF as an interchange for-
mat between the layout editor and extractor. Spice format files are used to communicate the
extracted circuit to a simulator. This verification system uses different file formats to transfer
data between each analysis program. This means that considerable effort is spent "re-inventing
the wheel" while each program writes code that parses its input format and then writes out
another output format. In addition, as the size of a design gets very large, keeping track of all
design revisions becomes a difficult task. The situation is further complicated by the fact that

multiple files for each revision must be maintained.
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Figure 2.4a - A design system using many interchange formats

Figure 2.4b shows a unified, integrated environment for design with an Oct database as its
central element. Since an Oct database can provide a repository for all design data — artwork as
well as an extracted netlist for simulation — both artwork and simulation tools can access the
design database through the same interface. The same access routines are used by each applica-
tion program to access Oct design data. All data conversions between programs that require dif-
ferent file formats would be eliminated. In addition, since designers are spared the juggling of

files in many different formats, data management problems are kept at a minimum.

For these reasons, iCHARM accepts input layouts in the Oct format as well as in the CIF for-
mat. In the next section, the Oct format is introduced with the goal of showing how an applica-
tion program — in this case the extractor iCHARM — uses the Oct access routines to read layout

information in the Oct format.
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Figure 2.4b - An integrated design system using Oct/Vem

2.7. The Oct Database and Terminology

Design data in the Oct format are organized and specified by the concepts of a cell, view,
and facet. The basic unit of storage in Oct is a cell, which, for example, may contain a single
transistor, a logic gate, or an entire functional unit (e.g., ALU, CPU, or RAM). To efficiently

represent a design, Oct cells are hierarchical so that one cell may contain instances of other cells.

Each cell in Oct may have one or more views depending on the point at which the cell is in
the design process. For example, at the architectural or logic design level, the cell is best
described by its schematic view, which abstractly defines the way instances of the cell are inter-
connected. On the other hand, a symbolic view would show the relative placement of objects
within the cell. At the artwork design level, a physical view describes the mask layout for leaf-
level cells. There also could be a simulator view of a cell that has objects of interest for simula-
tion, namely, net and component lists. This view of the cell would obviously be created by an

extractor.

Finally, for each cell and view there can be multiple representations or facets. The default

facet is the contents facet. In a schematic view, for example, the nets and instances of a cell are




19

included in the contents facet. For the physical or layout level view, the contents facet would
contain all of the mask geometries of the cell. Different facets for a view may be created to limit
the amount of detail used to represent the design. Another facet may be created to show a
simplified aspect of the same view: for a schematic view au interface facet may show only the
bounding box of the cell along with the interconnection terminals at the edge of the cell. In Fig-
ure 2.5, a contents and interface facet for a schematic view is shown. This simplified abstraction
of the view may be used to speed up the processing of a design hierarchy when a detailed

representation of each cell is not needed.

The facet is the object that is edited in the Oct/Vem system. For instance, in Vem, the
<cell>:<view>:<facet> must be specified to edit an object. The actual design data for a facet are
stored in a binary-encoded file named with the name of the facet. Since each cell can have mul-
tiple views and each view can have maltiple facets, the <cell>:<view>:<facet> is stored in the
file named <facet> under the directory named <view> which in turn is under the <cell> direc-

tory. Figure 2.6 shows the cell "alu186" with the views "schematic,” "physical,” and "simula-

tor.” Each view may have both a contents and an interface facet.

Each facet contains a collection of primitives or octObjects that constitute the design. A

facet itself is an octObject. The octObject primitives can represent structural information

Contents Facet Interface Facet
2= [ =
s} _L -
-4 -
- _r -
[ o |

Figure 2.5 - Contents and interface facet of a schematic view
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<cell>:<view>:<facet> in filesystem Example
<cell> alul86
<view> <view> <view> schematic physical simulator
Il ‘\ I' ‘\ ,l' ‘\ l” ‘\‘
.’l “. ." “. pd “\ i AN
<facet> <facet> <facet> contents; interface;
cell: alul86

Stored as:

view: physical alu186/physical/contents;

facet: contents

Figure 2.6 - How facets are stored in the file system

(instance, term, net), geometric information (box, polygon, circle, path, label, point, edge, layer),

and miscellaneous information (property, bag).?

Relationships between octObjects are specified by their attachments with other octObjects.
For example, a Box object may be attached to a Layer object, or a property attached to a Net or
transistor Instance. Attachment of object B to object A forms a graph with a directed edge from
A to B as shown in Figure 2.7. In Oct terminology, one can also say that A contains B (or the
contents of A is B) or that the container of B is A. The contents of an octObject are all of the

octObjects that are attached to it. The container of an octObject is the octObject that the given
object is attached to.

Facets contain octObjects by the use of attachments. Figure 2.8 shows a given hierarchical
Oct facet that has two instances. An example of the attachments that are created for such a

design are also shown. The facet is shown to contain an Instance bag that in turn contains the

? Terminals are the external connection points of a cell or instance. A bag is a user-defined collection of oc-

tObjects. Properties consist of a name string and a value: they may be used to represent the dimensions for a
transistor or parasitic capacitance values for nets.
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Figure 2.7 - Attachments: octObject B is attached to octObject A
Attachments
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Figure 2.8 - Simple attachments on a facet

two instances. The single internal net is attached to the facet. The external or formal terminals

are attached to the facet, but the so-called actual terminals of the instances are attached to the

instances not the facet.
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In Oct, one is free to make attachments in an arbitrary fashion. An Oct policy on a view
provides the meaning or reason for the attachments in the facets of a view. In some sense it
determines if an attachment makes sense, e.g., if a given attachment is "legal.” For example, the
policy on a facet with terminals attached to a net interprets the attachment to mean that the ter-
minals are connected to the net. The connectivity of the design that the facet is trying to
represent can be determined only by the policy for that facet. A policy can also be used to dic-
tate where to look in the facet for specific information: the dimensions of transistor instances or

the capacitance of a net, for example.

2.8. Oct Integration

An Oct front-end was developed for iCHARM so that it could read layout information from
Oct facets. The input module uses Oct access routines to read the facet and its attached objects

to subsequently build internal data structures.

2.8.1. Oct access routines

A program may interface with the Oct database by calling Oct access routines that read the
Oct files and communicate the information within them. The Oct access routines are defined in
object code libraries that must be linked with the interface program when it is compiled. The
basic access routines will be described next so that a sketch of the Oct input module of iCHARM

can be presented.

The declarations of the minimal set of access routines are shown in Figure 2.9. The octO-
penFacet() routine must be called before any operations can be done on the "facet” argument.

This routine is similar to fopen() except facets are manipulated instead of file pointers.

The octOpenMaster() routine is similar to octOpenFacet() except the "master” facet of the
given "instance" is opened for processing. The routine is useful, given the "instance” facet, to

get a pointer to the "master” facet that holds the original cell definition.

The octInitGenContents() and octGenerate() routines work together as shown in Figure
2.10 to generate all of the objects of a certain type that are attached to the "container” object.
The octlnitGenContents() routine is used to obtain a "generator” that is used to get all of the
octObjects that are attached to the "container” that are of the type specified by "mask.” The

octGenerate() routine is then used in a while-loop to sequentially produce the attached objects in
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octOpenFacet(facet)
octObject *facet;

octOpenMaster(instance, facet)
octObject *instance;
octObject *facet;

octInitGenContents(container, mask, generator)
octObject *container;
octObjectMask mask;
octGenerator generator;

octGenerate(generator, object)
octGenerator generator,
octObject object;

Figure 2.9 - Selected Oct access routines

octGenerator gen;
octObject net;
octObject term;

octInitGenContents(&net, OCT_TERM_MASK, &gen);
while (octGenerate(&gen, &term)) |
/* process the terminal term */

}
Figure 2.10 - Use of an Oct generator to get all attached terminals of "net"

the "object” variable using the "generator.” Similar routines exist to obtain all of the containers

of an object.

2.8.2. Oct input module

The Oct input module is sketched in Procedure 2.2. The procedure is not as simple as the
one that reads the CIF format. In CIF, the cells are defined in the file in the proper bottom-up

hierarchical order so that reading them in is straightforward.
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Procedure 2.2 - Oct input procedure
{
GetOctLayout()
Input: inputarg: facet name input argument.
Output: The internal data structures are built from Oct facet.
}
GetOctLayout(inputarg)
begin
octBegin();
inputfacet « return a facet name from inputarg string;
octOpenFacet(inputfacet); { start at the top-level cell inputfacet }
DefineCell(inputfacet, Cellhead);
octEnd();
end;

{
DefineCell()
Input: newcell: new cell struct to build (returned).
inputfacet: input facet.
Output: A cell struct newcell is built from the information in inputfacet.
}
DefineCell(inputfacet, newcell)
begin
newcell «— MakeNewCellstruct();
GetRectsFromFacet(inputfacet, newcell);
octinitGenContents(inputfacet, OCT_INSTANCE_MASK, instgen);
while octGenerate(instgen, instance) retumns OCT_OK do { make instance structs for newcell }
Getlnstance(instance, newcell);
end;

{
GetRectsFromFacet()
Input: facet: input facet to read boxes from
cell: cell struct being defined (to add rects to).
Output: Oct boxes from facet are converted into rects and added to rectlist of cell
}
GetRectsFromFacet(facet, cell)
begin
octlnitGenContents(facet, OCT_LAYER_MASK, lavergen),
while octGenerate(layergen, layer) retums OCT_OK do begin { for each layer. get all rects |
octInitGenContents(facet, OCT_BOX_MASK, boxgen);
while octGenerate(boxgen, box) return OCT_OK do
add a rect to cell’s rectlist from the info of box, layer:
end;
end;
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Procedure 2.2 - Oct input procedure (continued)
{
GetlInstance()
Input: instance: Oct instance
parenicell: cell struct to create instance for
Output: an instance struct for instance has been built and inserted into parentcell.
}
Getlnstance(instance, parentcell)
begin
{ get the facet that is the master (definition) of instance }
facet &« octOpenMaster(instance);
{ instdefn is set to the cell struct that defines the instance }
instdefn « retum the cell struct definition of facer;
if instdefn is not already defined
begin
DefineCell(facet, instdefn),
end;
{ build a new instance struct }
newinst « MakeNewInststruct();
newinst—defn « instdefn;
copy instance’s transformation matrix to newinst;
insert newinst into parentcell’s instance list;

end;

To read an Oct design, the hierarchy must be traversed manually. The Oct input module is
a recursive traversal of the design hierarchy that starts at the top-level facet. It then visits each
instance in order. If all of the instances of the current facet are defined, then the current facet is
processed: the Oct boxes that are attached to the facet are read in, and instance structs are
created for all of the instances. If the definition of the instance is not defined then the module

calls itself again on the instance’s definition facet.
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CHAPTER 3

CIRCUIT EXTRACTION ALGORITHMS

This chapter describes the process of circuit extraction in more detail. A stated research
goal of this work is to do the extraction hierarchically; hierarchical extraction is done on cells
with mask-level geometries as well as subcell instances. As a first step, however, it is important
to look at how flat extraction is done, that is, extraction done on cells consisting only of
geometries and without any instances. Flat extraction can be thought of as the basis of hierarchi-
cal extraction since all hierarchical extractors must call a flat extractor, for example, on the leaf-
level cells of a design. Hierarchical extraction is simply an extension of the basic flat procedure
which then allows the extractor to handle cells with instances. Therefore, methods to carry out

flat extraction will be examined first.

3.1. The Flat Circuit Extraction Process

As stated before, circuit extraction is the transformation of artwork mformation into circuit
information so that one may verify that a circuit performs as intended. A flowchart of the (flat)

circuit extraction process is shown in Figure 3.1.

The input to the flat extractor consists of the rectangles of the layout for each mask layer.
The geometric extraction step consists of, first, the identification of transistors by finding the
regions where the POLY and DIFF mask layers overlap. Second, all of the interconnection nets
are identified by starting at each transistor’s drain or source region and collecting all of the
electrically-connected rectangles. The algorithm used and the underlying data structures are
very critical to the efficiency of the geometric extraction step. The two tasks listed above are the

specifics of the following general layout analysis problems:
(1) Find the intersection of geometries on two layers
(2) Find all of the connected geometries on a given layer that contain a given coordinate

Geometric extraction algorithms are compared in the next section.
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Figure 3.1 - The circuit extraction process

The extraction of electrical parameters is the second major step in the extraction process.
In this step, the dimensions of the transistors are calculated, and the resistance and capacitance
of the interconnection nets are calculated. The final output of the extractor consists of the

transistors extracted and the parasitic resistance and capacitance of the interconnects.

The extraction of the parasitic values, as shown in Figure 3.2, is actually a modeling step.
Each rectangle of a net is considered to form a parallel-plate capacitance with the chip substrate
which is the ground plane for the chip. A simple model is used to calculate this substrate capac-
itance; the capacitance is calculated by finding the total area and perimeter of the rectangles that

make up the net, multiplied by a technology-dependent constant.

Generalized resistance extraction of arbitrary combinations of rectangles is not as easy a
problem as capacitance estimation. For the resistance of each interconnection net, the rectangles
that make up the net are split into simpler, nonoverlapping pieces that cover the same area as the
original rectangles. The total resistance across the length of the rectangles that make up the net
is the sum of the resistances through each of the simplified pieces. Parasitic extraction is

covered in detail in Section 4.2.
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Figure 3.2 - Parasitic extraction of interconnection nets

3.2. Geometric Extraction Algorithms

An input layout for a typical circuit is made up of a large number of rectangles. The
geometric extraction step, which is the basis of the entire extraction process, consists of a

number of operations on each of the input rectangles.

The data structure chosen to store and retrieve the layout rectangles is crucial to the
efficiency of the algorithm used to carry out the geometric extraction step. In addition to the
time complexity of the algorithm, the total memory usage of the process must be considered.
Even in systems with a large virtual memory, the thrashing caused by a small physical memory
when the memory image is large can significantly degrade the performance of an algorithm. In
this section, several layout data structures that have been employed in previous extractors are

discussed along with the one that is used in iCHARM.

3.2.1. K-D trees
The first technique uses multi-dimensional binary trees or so-called K-dimensional (K-D)

trees to store the input rectangles [13], [15]. This structure has been shown to be particularly
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efficient for a layout editor although it was originally developed for the general problem of asso-
ciative retrieval of data records with a multiple number, K, of keys or attributes. For the purpose
of storing rectangles, K = 4, with the four keys, k; = {Xnin, Ymin Xmax, Ymax} for i=(0,1,2,3},

representing the bounds of each rectangle.

Each node in a 4-D tree corresponds to a rectangle in the layout. At level / in the tree, the
value i is defined as the discriminator of a node at level /. At any node in the tree, the coordinate
k; of the rectangle is used to bisect the layout plane, and any subsequent rectangles that are
inserted into the tree are placed in the node’s right or left subtree depending on where the new
rectangle lies in relation to the bisection line. In other words, for a node ¢, the key values k; of
each node in the left subtree of ¢ are less than the k; of ¢, and the key values k; of each node in

the right subtree of ¢ are greater that the k; of ¢.

Figure 3.3 shows a 4-D tree created from the given layout as an example. In each node, the
circled key value is used to split the input plane for the right and left subtrees. For rectangle A,
the Xpin (left edge) value .. .s used to split the layout plane: all rectangles to the left of x = 3,
namely, B, D, E, and .1 .ce put in the left subtree of A, and rectangles C, F, G, and I have an
Xmin larger than 3 5o they are put into the right subtree of A. For rectangles with a discriminator
of 1 (B and C), the bottom edge is used to split the input plane; for discriminator 2 rectangles (D,

E, F, G), the right edge is used, etc.

The first step in geometric extraction is the identification of all transistors, that is, where
POLY and DIFF rectangles intersect. This is done by finding, for each POLY rectangle, the DIFF
rectangles that intersect it. Let N be the total number of input rectangles. The number of POLY
rectangles is O(N) and Rosenberg [13] reports that intersection search, in which all rectangles
that intersect a given region are found, takes O(log N) for K-D trees. Therefore, transistors may
be identified in O(N log N).

To identify all of the connected rectangles in the geometric extraction step (net
identification), Marple [8] reports that K-D trees should take O(n log N) time, where # is the
number of rectangles in the net. Since n is O(N), the entire geometric extraction step with K-D
trees should take O(N log N) timne. Of course, all N records need to be kept in memory for the

extraction process, so the space complexity is O(N).

The K-D trees have a number of disadvantages, the primary one being that certain insertion

orders will create an unbalanced tree that degenerates into a simple linked list. The running time
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Figure 3.3 - A layout and its corresponding 4-D tree

for the structure will degrade in this case so additional processing must be done when rectangles

are added or deleted from the tree to keep the tree balanced.

3.2.2. Scanline algorithms

Rather than consider all of the rectangles at once, in a scanline extraction algorithm, the
rectangles are considered only when they cross a vertical scanline that sweeps across the input
plane from left to right [1], [4], [16]. The scanline stops at points in the plane where the rectan-
gles begin and end.

At each stopping point, all rectangles that are beginning (i.e., the scanline is at leftraost
edge of the rectangle) are inserted into the "scanline” data structure; all rectangles that are end-
ing are deleted from the scanline structure. The scanline structure can be thought to contain the
"active” rectangles for the extraction process. When a rectangle is added to the scanline struc-

ture, it is determined if it intersects with any other rectangle currently in the structure.
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New Rects (to be added to scanline): B
Old Rects (to be deleted from scanline): C
Existing Rects in scanline: A, C,E

Nets created: Two {(C, D, E), (A)}

Rect B will be added to the net (C, D, E)
and a transistor will be created

>

Scanline

Figure 3.4 - The scanline extraction process

Intersections of POLY and DIFF rectangles create transistors. On the other hand, if two intersect-
ing rectangles are on layers that electrically connect, then the new rectangle is added to the list
of rectangles that make up a net, of which the rectangle already in the scanline structure is a

member.

Figure 3.4 shows an example of extraction in progress that uses a scanline. Rect A is a DIFF
rect, and all other rects are POLY. At present the scanline is positioned to add rect B to the scan-
line structure since its left edge is on the scanline. When it does so, rect B will be added to the
net that already contains rects C, D, and E. The intersection of rects A and B will create a
transistor, and finally at the end of this scanline position, rect C will be deleted from the scanline

structure and no longer be considered active.

Actually, the scanline technique uses simple linked lists as the data structure to store the
rectangles, although the lists are kept sorted. In this case. the scanline technique is more impor-
tant than the data structure used to store the rectangles. Scanlines are useful for batch applica-

tions like extraction, but since the underlying data structure is a linked list, using scanlines
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would not be advisable for the interactive queries or random deletions of rectangles that would

be frequent in layout editing.

However, Szymanski [16] reports the time complexity of geometric extraction with scan-
lines should also be O(N log N) with an expected space complexity of only OCN ). The space
complexity is dictated by the maximum number of rectangles cut by a vertical line in the layout

plane, which has an expected value for most designs of 0(‘/_1\7).

3.2.3. Corner stitching

Comer-stitching has emerged as a successful data structure for storing layout rectangles to
implement such tools as a layout editor, design rule checker, compactor, and extractor [14], [8].
In comer-stitching, both the layout rectangles and the empty space between them are stored with
nonoverlapping tiles. Input rectangles that overlap are handled by creating special overlap tiles
or by combining them with existing tiles to create larger nonoverlapping tiles. Two stitches per
tile are used to connect adjacent tiles (see Figure 3.5 for an example of a corner-stitched layout).

Because of this, the most efficient operation for corer-stitching is nearest neighbor searching.

Marple [8] reports that comer-stitching is slower than K-D trees for insertion and deletion
operations. Therefore, K-D trees are favored for fast interactive layout editing with a iarge
number of rectangles, and comer-stitching is advocated for batch processing such as that

involved in extraction.

Net identification using the "node search" algorithm in Marple [8] is reported to take O(n),
where n is the number of rectangles in the net. Transistor identification uses the "area search”
algorithm to find the intersection of POLY and DIFF that creates each transistor; then the node
search procedure can be used to combine transistors made up of several tiles. Area search is
reported to be O(n) also. Therefore, the time complexity of the geometric extraction step with

comer-stitching is linear.

The primary disadvantage of comer-stitching has been reported to be the difficulties it has

in handling a large number of different layers [8] and multiple overlapping regions [13].

3.2.4. The geometric extraction algorithm in iCHARM

The choice for the geometric extraction algorithm used in iCHARM was perhaps determined
more by practical concemns than by theoretical advantages. Two existing extractors that were

developed at the University of Illinois were evaluated with the intent to use the geometric
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Figure 3.5 - A corner-stitched layout

extraction code in one of the existing implementations to develop a new hierarchical extractor,
one that is integrated with the Oct/Vem system. It was felt that nothing would be gained from
starting from scratch. The first extractor, iCPEX, uses 4-D trees to store the input rectangles [15],

and the second extractor, PACE, uses a scanline extraction algorithm [1].

The extractor in the Magic layout editor was not evaluated, primarily because hierarchical
extraction is already implemented in the program. As will be shown in Chapter 5, the Magic
extractor handles a difficult hierarchical test-case by flattening the hierarchy. A new technique
was developed for iCHARM that extracts the test-case without flattening. In addition, it was felt
that the large size of the Magic program would make it difficult to learn and to add new features

to it. The iCPEX and PACE programs were of a more manageable size.

After extensive study, the PACE program was found to be a better implementation. The
next chapter presents the details of the iCHARM implementation which uses code from the PACE

program to do the basic flat extraction.
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CHAPTER 4

iCHARM FLAT EXTRACTION

This chapter documents the implementation of iCHARM to do geometric extraction, power
bus extraction, and parasitic extraction. Since only basic techniques are covered, hierarchy is
not yet utilized in this analysis. As mentioned before, a scanline algorithm is used to find the

geometric relationships between the mask-level rectangles.

4.1. Geometric Flat Extraction

Geometric extraction, in which the basic connectivity of a cell is formed, is the first step in
the extraction process. The geometric extraction subroutine takes a cell as its input argument;
the rectangles in the rectlist of the cell are used as input to create the nets and transistors that are

output in the netlist and tranlist fields of the cell struct.

The extraction is considered flat because only rectangles are used in the geometric extrac-
tion process. If the input cell originally contained instances (in other words, hierarchy), then the
cell must be flattened using the Flatten(} procedure shown in Procedure 2.1 before flat geometric

extraction is performed. The major steps in the flat extraction process are the following:

{
FlatExtract()

Input: cell: The cell to extract. Input rectangles are in cell’s rectlist.
Output: The extracted net and transistors in cell’s petlist and tranlist.
)
FlatExtract(cell)
begin
if cell has hierarchy then
Flatten(cell);
GeometricExtract(cell);
ParasiticExtract(cell);
report transistors and parasitics for cell;
end;




35

4.1.1. Geometric data structures

The C-language declarations for the rect, linkel (link element), net, and tran (transistor)
structures are introduced in Figure 4.1 to permit an in-depth presentation of the geometric
extraction procedure. Each struct has a nextper field that is used to make a linked-list of each
type.

Each electrical net is defined by a net struct. The net is identified by its netnum, which is

generated internally by iCHARM, or the user may name the net by defining a label at the location

/* NET DEFINITION ¥
typedef struct _net {

long netnum; /* number of the net */
char *lab; /* label for the net */
union {
char *ptr; /* a scratch pointer field */
int cnt; /* a scratch count field */
} scratch;
struct _rect *rectlist; /* list of rects for this net */
int rcount; /* count of number of rects in 'rectlist’ */
struct _term *termlist; /* list of terminals for this net */
int tcount; /* while the net is in the scanline struct,
count of terms in cell’s input termlist */
float cap; /* the capacitance of the net */
struct _net *nextptr;
} net, *netptr;

/* MASK RECTANGLE ¥/
typedef struct _rect {

lOﬂg COOl'd[4], /‘ Xmin, Y min Xmax,Ymax */

char layer; /* layer number */

union |
struct _net *setptr; {* ptr to owner net (rect in netp—srectlist) */
struct _linkel *tranpt; /* ptr to transistors (drain/source rect) */
char *prirect; /* ptr to primary rect or term (in scanline) */
struct _tran *settran; [* ptr to transistor (channel rect) */

} un;

struct _branchnode *bnode; /* rect’s branchnode (parameter extraction) */

struct _rect *nextptr;

) rect, *rectptr;

Figure 4.1 - Data structures for geometric extraction
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of a rectangle of the net. The lab string is the user name for the net. After the geometric extrac-

tion process is over, the rectlist field contains a list of rectangles that make up the net.

The rectangle struct includes the {Xnin YminXmax, Ymax) bounds of the rectangle and the

layer it is on. The un union field is used for temporary pointers during the extraction process.

The linkel (link element) struct is used to hold a list of pointers to arbitrary items: the
pointer Iptr is cast to the type of object that it points to.

The tran struct defines each transistor. The chanptr field points to a list of channel rectan-
gles which are the rectangles that make up the channel region of the transistor. The pdiff field is

/* LINKEL - a general structure for a list of pointers */
typedef struct _linkel {

char *iptr;

struct _linkel *nextptr;
} linkel, *linkelptr;

/* TRANSISTOR ¥
typedef struct _tran {

long trannum,; /* the transistor number */
struct _rect *chanptr; /* a list of channel rectangles */
char ttype; /* type of the transistor */
union {
struct _linkel
*pdlink{2]; /* the poly and diff links */
struct
long area; /* area of the channel rectangles */
long length; /* length of intersecting diff rectangles */
}al;
} pdiff;
long gnode, snode, dnode; /* gate, drain, and source node numbers */
long gnetnum, snetnum, /* gate, source, and drain net numbers */
dnetnum,;
union {
char *ptr; /* a scratch pointer field */
int cnt; /* a scratch count field */
} scratch;
struct _tran *nextptr;
} tran, *tranptr;

Figure 4.1 - Data structures for geometric extraction (continued)
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used for temporary storage during extraction. The dnetnum, gnetnum, and snetnum fields are the
net numbers of the drain, gate, and source terminals of the transistor. For example if a
transistor’s gate is connected to a net with a netnum of "57," then the gnetnum of the transistor is

setto "57."

On the other hand, the dnode, gnode, and snode fields are the node numbers of the drain,
gate, and source. In geometric extraction, all of the connected rectangles are collected into one
net and all of the rectangles are considered to be equipotential. In parasitic resistance extraction,
each net is split up into equipotential regions with resistances between them,; these equipotential

regions are defined as nodes.

4.1.2. Basic scanline extraction procedure

A general scanline procedure is presented in Procedure 4.1. The procedure processes the
rectangles in rectlist. Since the scanline proceeds from left to right, the rectlist must be sorted.
The curscan variable keeps the current scanline position. The rectangles are removed from the
rectlist in sorted order. The scanline "stops" at the Xpy;, coordinate of the rect at the head of

rectlist and processes all rects that have the same X;; coordinate.

Rects are kept in the scanline structure while curscan 2 the rect’s X.,;, and curscan < the
rect’s Xnax. In iCHARM, the scanline structure is implemented as a simple linked list. More
sophisticated data structures could be used to support faster deletion or searching of rectangles in

the scanline structure.

Procedure 4.1 will now be discussed in detail. At each stopping point of the scanline,
curscan is set to the left edge of the rectangle at the head of rectlist. Next, the scanline structure
is searched to find the rects already in the scanline structure that have been passed by curscan
and must be deleted. This is accomplished in the DeleteFromScanline() routine, which also may
do some algorithm-specific processing of the rectangle that is to be deleted from the scanline

structure.

In the next step, prect, the rect with its X,;, edge at curscan, is taken out of rectlist so that
it may be inserted into the scanline structure. The AddToScanline() routine is called to perform
any algorithm-specific processing of the new rectangle. The input rect prect is checked against
all rects in the scanline structure to see if it touches any of them. The touching rects and prect
are processed in various ways according the purpose of the scanline procedure being imple-

mented. Then prect is added to the scanline structure.
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Procedure 4.1 - A generic scanline procedure
{
ScanlineAlg()
Input: rectlist: list of rectangles to process.
Output: The rects have been processed (from left to right) in some way.
}
ScanlineAlg(rectlist)
begin
sort rectlist in increasing order of X i;
while there are rects in rectlist do begin
curscan « Xmin of head of rectlist;
DeleteFromScanline();
for all rects, prect, with Xnin = curscan do begin
prect « Pop(rectlist);
AddToScanline(prect);
end;
end;
curscan ¢ +oo;
DeleteFromScanline(); { delete (and process) all the remaining rects from scanline }
end;

{
AddToScanline()

Input: prect: the rectangle to process and add to scanline.
Output: The rects in the scanline that touch prect have been processed in some way,
and prect has been added to the scanline structure.
}
AddToScanline(prect)
begin
for all rects, srect, in scanline that touch prect do { find all rects in scanline that touch prect }
process interaction of srect and prect;
add prect to scanline;

end;

{
DeleteFromScanline()
Output: Rects past curscan have been processed in some way and deleted from the scanline structure.
}
DeleteFromScanline()
begin
for all recis, srect, with ¥ ;s < curscan do begin  { flush all rects in scanline past curscan }
srect « Pop(scanline);
process outgoing srect if necessary;
end;
end;
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Scanline |

=

Position 1 2 3 4

Figure 4.2 - A collection of rectangles to process using a scanline

Figure 4.2 shows a collection of rectangles to be processed by a scanline algorithm. The

scanline will stop at points 1, 2, 3, and 4. At each point, the following will occur:

At point 1:
Rects A, B, C, and D will be added to the scanline structure. Let A be added first. Then
when B is added, the interaction between A and B will be considered and processed. Since
C does not touch A and B, rect C is simply added to the scanline structure. When D is
added, the C-D interaction is processed.

At point 2:
No new rects are added to the scanline structure. Rects B and C are deleted from the scan-
line.

At point 3:
Rect E is added to the scanline structure. A and D are still in the scanline, so the interac-
tion of E-A and E-D is processed before E is added.
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At point 4:
All remaining rects are deleted from the scanline.

The next sections will present the application of the basic scanline procedure to implement

geometric extraction in iCHARM.

4.1.3. Scanline net extraction

First, the problem of finding all the nets of a cell, which amounts to partitioning the input
list of rectangles for the cell into electrically-connected groups, is considered. Since each group
constitutes a net, the output of the net extraction procedure is a list of net structs, and each net

has a list of rectangles for the net.

The net extraction procedure given in Procedure 4.2 is an extension of the basic scanline
procedure. The basic procedure is modified by filling in the AddToScanline() and DeleteFrom-
Scanline() routines. In the AddToScanline() routine, CreateNet() is called to make a new net
struct for the rect prect. The output of CreateNet() is shown in Figure 4.3. In CreateNet(), a
copy of prect is inserted into the new net’s rectlist and the pointer netrect is returned by the rou-

tine. The netrect’s un.setptr is set to point back to the net struct.

netrect
ect nextptr
un.setptr
rectlist /JL'W
Net
nextptr
g tp

Figure 4.3 - The output of the CreateNet() routine




Procedure 4.2 - Net extraction procedure using a scanline algorithm
{
NetExtract()
Input: cell: contains a list of rectangles to process.
Output: The cell’s netlist has been created.
)
NetExtract(cell)
begin
ScanlineAlg( cell’s rectlist );
end;

{
AddToScanline()
Input: prect: the rectangle to process and add to scanline.
Output: A net struct is created for prect, the nets of the rects in the scanline that
touch prect are combined, and prect is added to the scanline structure.
}
AddToScanline(prect)
begin
netrect «+ CreateNet(prect);
{ find all rects already in scanline that touch prect }
for all rects, srect, in scanline that touch prect do
begin
combine nets that contain srect and prect;
end;
add prect to scanline;
end;

{

DeleteFromScanline()

Output: All rects past curscan are deleted from the scanline structure;

complete nets are added to the cell’s netlist.

}
DeleteFromScanline()
begin
{ flush all rects in scanline past curscan )

for all rects, srect, with X,,..x < curscan do

begin

srect « Pop(scanline);

{ "complete” nets have no rects in the scanline, i.e., all of the rects that make up the net

are past curscan )
if the pet of srect is "complete,” then add the net to the cell’s netlist;
end;
end;

41
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After CreateNet(), the nets of the rects in the scanline structure that touch prect are com-
bined with prect’s net since all connected rects should be in a single net. This step corresponds
to "processing the interaction of srect and prect” in the generic procedure of Procedure 4.1. Sub-
sequently, prect is added to the scanline structure: prect is added to the scanline list, and the

un.prirect field of prect is set to point to netrect.

DeleteFromScanline() is also modified for net extraction. If a rect is to be deleted from the
scanline and it is the last rect in the scanline structure for its net, then the net is inserted into the

cell’s netlist. This step corresponds to "processes the outgoing srect” in Procedure 4.1.

The net extraction procedure is illustrated in Figure 4.4 using the same rectangles of Figure

4.2. The scanline contents are shown at each value of curscan in Figure 4.4.

scanline lRect ex(Rect|__, [Rect Rect] Scanline[Rect] nextptr

.prirect
A

Rect

A 4

|Rect

Figure 4.4 - The scanline contents for the net extraction of Figure 4.2




43

At position 1, rects A, B, C, and D are inserted into the scanline structure. Let the insertion
order be A, C, B, then D. Rect A will create one net, as will rect C (from CreateNet()). Rect B
will create another net, then combine nets with A (both A and B are put in the same rectlist)
since A and B touch. Similarly, rect D will create a new net, then combine with C. Two nets
finally remain. At position 2, rects B and C are deleted from the scanline structure. At position
3, rect E is added to the scanline and combines both nets since it joins rects A and D. Finally, at

position 4, all rects are deleted from the scanline so the net is added to the cell’s netlisz.

4.1.4. Scanline transistor extraction

The scanline procedure that extracts the nets may be modified to identify transistors. The
AddToScanline() procedure of Procedure 4.2 should be modified as shown in Procedure 4.2a.
The CreateTransistor() routine creates a new transistor structure. In this routine, the intersection
area of the POLY and DIFF rectangles is used to create a channel rectangle that is inserted in the

new transistor’s chanptr field. Pointers to the rectangles that form the transistor’s drain, source,

Procedure 4.2a - Transistor creation procedure using AddToScanline()
{

AddToScanline()

Input: prect: the rectangle to process and add to scanline.

Output: A net struct is created for prect, the nets of the rects in the scanline that touch prect are
combined, and prect is added to the scanline structure. A transistor is created if prect
and any rects in the scanline form one.

}
AddToScanline(prect)
begin
netrect « CreateNet(prect);
{ find all rects already in scanline that touch prect }
for all rects, srect, in scanline that touch prect do begin
if prect and srect form a transistor then
CreateTransistor(prect, srect);
else
combine nets that contain srect and prect,
end;
add prect to scanline;
end;
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and gate terminals are recorded in the transistor’s pdiff field. When the rectangles of the transis-

tor are beyond the curscan position, the transistor is output to the cell’s transistor list (¢ranlist).

The modified net extraction procedure that also creates transistors accomplishes the major-
ity of the geometric extraction step. In iCHARM, a subroutine named processtran() is called after
the nets and transistors are identified to do some final processing of the data structures. The
processtran() routine sets the drain, gate, and source net and node numbers for each transistor. It
calculates the channel area and length of each transistor and stores it in the pdiff.al field. The
routine also rearranges the pointers to the drain, source, and gate rectangles so that the pointers

point hack to the transistor from the rectangles.

Figure 4.5 shows the data structures that are created for a simple layout after geometric

extraction is complete. The drain, source, and gate rects use their un.tranpt field (through linkel

Data Structure Lavout

500

350

ect Tran 150
hanptr
(313(())’;285 P (gsdinode 2,3,4
’ un.settran | [gsdlnetnum 0
CI{AN 1,3’2 L<
pdiff.al.area 0 150 350 500
40000
. iff.al.l h .
Linkel ‘2’80 engt Linkel
\————/
un.tranpt . un.tranpt
Rect [Rect [Rect ect
(350,150, (150,150, 0,150, (150,350,
500,350) 350,350) 150,350) 350,500)
POLY POLY POLY
un.setptr

netnum 3

Figure 4.5 - The data structures created after geometric extraction
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structs) to point to the transistor that is connected to the rects. Notice in Figure 4.5 that the

netnum’s of the nets are used for the transistor’s dnetnum, gnetnum, and snetnum.

This final data structure is then passed to the parasitic extraction module where the rectan-

gles in each net’s rectlist are used to compute parasitic resistance and capacitance values.

4.2. Parasitic Flat Extraction

Once the rectangles of each net are co